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Abstract

In this paper, we analyze the Dirichlet-to-Neumann (DtN) operator in the periodic case as a pseudodifferential

operator represented through boundary integrals. We begin with some analytical results concerning the structure of the

operator. In particular we exploit the freedom available in the choice of the kernel for the boundary integral repre-

sentation to introduce a new logarithmic kernel for the fundamental solution of the Laplacian on a cylinder. We then

use it to develop a superalgebraically convergent numerical method to compute DtN which proves very stable even for

nonsmooth and large variation curves. An important step in the proposed procedure is the inversion of an integral

equation of first kind. To deal with it, we introduce an efficient FFT-based preconditioner which performs well in

combination with Nystrom�s method and a decomposition of the operator based on ‘‘flat geometry subtraction’’.
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1. Introduction

A large variety of classical problems of mathematical physics lead to systems often comprising simple

potential equations in domains with nontrivial geometries and nonhomogeneous boundary data. A typical

situation is given when one is interested in computing a boundary force in terms of the normal derivative of

a potential for which Dirichlet data are known. This happens for fixed and moving boundary value

problems in electro-magnetism, fluid dynamics and solid mechanics (cf. for instance [1,2,5,11,13]). It also

naturally arises when one introduces artificial boundaries for the numerical purpose of solving problems in
unbounded domains (cf. [7] for instance).

Solving the Dirichlet problem in a bounded or unbounded domain in order to compute the normal

derivative of the solution on the boundary precisely defines what is known as the Dirichlet-to-Neumann
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map (DtN operator) in the literature, see [14]. The DtN operator is particularly easy to deal with if the

domain has a simple geometry but its efficient computation rapidly becomes challenging if the domain

geometry significantly deviates from a simple one. Complicated or nonsmooth geometries are very natural

especially in electro-magnetic scattering problems or in free boundary problems of fluid and solid me-

chanics. Whence the need of finding efficient and simple ways to compute the DtN operator which are as

much as possible insensitive to domain geometry. To keep the presentation short we restrict our attention

to Laplace�s equation only.

1.1. What is known?

There are essentially two approaches that have been taken to computing the DtN operator: perturbative

pseudo-differential operator techniques and so-called boundary integral methods.
The first is perturbative in nature. It relies on an old result by Coifman and Meyer [3] which shows

analytic dependence of the DtN operator on the curve/surface in a Lipschitz neighborhood of a flat curve/

surface. This approach is used for instance in [5]. The nonconstant coefficient Fourier symbol for the

perturbed DtN operator is developed in a power series for the function representing the curve, which in

particular needs to be of graph type. By truncating the series, the actual problem is then reduced to

computing a finite linear combination of compositions of multiplication operators and constant coefficient

pseudodifferential operators the symbol of which can be obtained analytically. Either type of operator can

then be computed efficiently in physical and in Fourier space, respectively. A recent paper by Nicholls and
Reitich [14] gives a nice overview of these methods and improves on some of their features. In particular

these perturbative methods tend to be numerically unstable even for smooth curves due to analytical

cancellation effects in the terms of the series expansion. Nicholls and Reitich [14] show how these methods

can be made more stable by eliminating cancellation effects taking into account a higher computational cost

and some analytical manipulations.

The second is based on classical boundary integral representations for the solution using single and

double layer potentials. This technique can be used for a variety of different problems. The knowledge of a

fundamental solution for the potential equation in free space allows one to derive a relation (using Green�s
formula, see for instance [9]) between Dirichlet and Neumann boundary data for a harmonic function of

the interior. This approach, implemented for instance in [1,2] has the advantage of applying to general

curves. In particular they need not be of graph type. At the same time it prevents the use of Fourier ar-

guments precisely because it can handle very general geometries which are not even close to being linear/

circular. Another price which needs to be paid is that the integral equations have singular or weakly sin-

gular kernels, which is a real numerical issue especially for surfaces in R3. These methods would also profit

from an improvement of their numerical stability. In [8] the authors give a nice general overview of the use

of boundary integral methods in applied mathematics, especially in fluid dynamics.

1.2. What is new?

Our program is to first consider the problem of finding a satisfactory analytical representation for the
DtN operator and subsequently to use it in order to obtain a good discretization. In order to do so we

derive a new kernel of logarithmic type for the fundamental solution for the Laplace operator on an cyl-

inder. With it we propose a single-layer potential boundary integral method for the computation of DtN.

The procedure entails solving an integral equation of first kind. The discretized equations will inherit the ill-

posedness of their continuous counterpart and suffer from the presence of singular integrals. We show how

the difficulties stemming from these can be elegantly circumvented by using a boundary integral method

combined with Fourier analysis, however not in a perturbative way. More specifically we propose a FFT-

based preconditioner, which, combined with the standard flat geometry subtraction, eventually leads to a
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superalgebraically convergent scheme for the computation of DtN. Our final product will be an accurate

and stable pseudo-spectral (Fourier) boundary integral method which performs equally well for nonsmooth

and/or large variation curves as it does for small variation smooth curves. The ideas can readily be applied

to the analogous 3D problem but will be the topic of another paper.

The rest of the paper is organized as follows. In Section 2, we perform all the preparatory analytical work.

We in particular set up a bridge between the boundary integral method and the Fourier method. In Section 3,

we introduce a discretization of the analytical representations by means of Nystrom�s method combined with

the choice of optimal quadrature rules and with a FFT-based preconditioner. Finally Section 4 is devoted to
numerical experiments in support of our theoretical claims. In Appendix A, we give a proof of the jump

relation satisfied by the integral representations based on the new kernel. In Appendix B, we show how the

nonconstant coefficient symbol of the general representation can be derived from the ‘‘flat’’ symbol.
2. Analysis of the DtN operator

In this paper, we concentrate our attention on the 2D periodic situation. More precisely we consider
Laplace�s equation

�Du ¼ 0 in XC; u ¼ g on C ð2:1Þ

in the region XC lying above the 1-periodic curve C. Although the results presented here remain valid in the

case of general curves we restrict ourselves to the case of curves which can be represented as the graph of a

function for the sake of simplicity. For the general case we refer to Remark 5 in Section 2.3 and the nu-

merical experiments of Section 4 (cf. Examples 4 and 8). We propose the new kernel

Gðx; yÞ ¼ 1

2p
ln 1
�

þ e�4py � 2 cosð2pxÞe�2py
�
; ð2:2Þ

which is 1-periodic in the first variable, and the corresponding representation for the solution ug of (2.1) of
the form

ugðzÞ ¼
Z

C
Gðz� ~zzÞf ð~zzÞdrCð~zzÞ; z 2 XC ð2:3Þ

in terms of an unknown boundary function f . If we assume that the curve C be parametrized by the

1-periodic function s, the integral (2.3) reads

ugðx; yÞ ¼
Z 1

0

Gðx� ~xx; y � sð~xxÞÞf ð~xxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2xð~xxÞ

q
d~xx; ðx; yÞ 2 XC: ð2:4Þ

Since we are eventually interested in the derivative in normal direction restricted to the boundary we

assume the boundary value g has mean zero, that is,Z
C
gð~zzÞdrCð~zzÞ ¼ 0: ð2:5Þ

It has indeed been shown (see for instance [16]) that the kernel of DtN consists of mean zero boundary

functions in a variety of functions spaces comprising L2ðCÞ for a simple example. Assumption (2.5) also

makes

g ¼
Z

C
Gð�

�
� ~zzÞf ð~zzÞdrCð~zzÞ

�����
C



328 P. Guidotti / Journal of Computational Physics 190 (2003) 325–345
uniquely solvable. Let m denote the unit outer normal to X. After finding the boundary function f we use

(2.4) to derive a boundary integral representation of DtNðgÞ ¼ @mugjC (the restriction might occasionally

need to be understood in the sense of traces) as follows

DtNðgÞðzÞ ¼
Z

C
rGðz

	�
� ~zzÞjmðzÞ



f ð~zzÞdrCð~zzÞ

�����
C

ð2:6Þ

or, in coordinates,

DtNðgÞð~xxÞ ¼
Z 1

0

Kðx;~xxÞf ð~xxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2xð~xxÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2xðxÞ

p d~xx

0
@

1
A
������
y¼sðxÞ

ð2:7Þ

for

Kðx;~xxÞ ¼ @xsðxÞ@xGðx� ~xx; y � sð~xxÞÞ � @yGðx� ~xx; y � sð~xxÞÞ:

We defined the function ug only above the curve C and it is therefore clear that the above restrictions are
always meant to be obtained by taking the limit from above the curve C. In view of the singularity of kernel

(2.2) a singular interaction along the boundary curve will in fact produce a Dirac contribution as we shall

see below.

2.1. Derivation of the kernel

Let us start with the trivial case, where the curve C is the x-axis. It is natural to look for a solution in

Fourier space and, since we are focussing on the periodic case, we obviously easily obtain the standard

representation for the solution of (2.1)

ugðx; yÞ ¼
X1
k¼�1

ĝgke
�2pjkjye2pikx ð2:8Þ

in terms of the Fourier coefficients of the boundary function g. From (2.8) we can trivially compute

DtNðgÞ ¼ 2p
X1
k¼�1

jkjĝgke�2pjkjye2pikx

�����
y¼0

:

But this is not the way we want to look at the above formulas. We actually want to take a more abstract

perspective based on pseudo differential operators (WDOs in the sequel) techniques. If we view

e�2pjkjy� �
k2Z

as the symbol of a WDO with constant coefficients (depending on the parameter y > 0) we can actually
compute the kernel of the corresponding convolution operator associated to (2.8) (at least for fixed y) to
obtain

Hðx; yÞ ¼
X1
k¼�1

e�2pjkjye2pikx ¼ 2� 2e�2py cosð2pxÞ
1þ e�4py � 2 cosð2pxÞe�2py

� 2; ð2:9Þ

where H is nothing but a harmonic function of the upper/lower half plane for which

lim
y!0þ

Hð�; yÞ ¼ d � 1 in D0
pð0; 1Þ;
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where we introduce the space

D0
pð0; 1Þ ¼ L C1

p ð0; 1Þ;K
	 


of 1-periodic distributions over the line as the dual of 1-periodic test functions with its natural (locally

convex) Fr�eechet topology. Let us introduce a 1-periodic convolution through

ðu  p vÞðxÞ ¼
Z 1

0

uðx� ~xxÞvð~xxÞd~xx; x 2 ð0; 1Þ; ð2:10Þ

which is easily checked to be well-defined by thinking of u as being periodically extended outside ð0; 1Þ in
order to make sense of uðx� ~xxÞ. Alternatively, if we prefer the comfort of working solely in one periodicity
interval, we can interpret the sum x� ~xx as a sum modulo the period. In this new notation, the unique

bounded solution to the periodic Poisson equation is seen to be given by

ugðx; yÞ ¼ Hð�; yÞ  p f
� �

ðxÞ ¼
Z 1

0

Hðx� ~xx; yÞf ð~xxÞd~xx; ð2:11Þ

which is nothing else but the periodic version of the well-known Poisson integral. We can therefore rein-
terpret the computation of DtN(g) in this case as first solving the convolution equation

Z 1

0

Hðx� ~xx; 0Þf ð~xxÞd~xx ¼ hdðx��Þ � 1; f i ¼ gðxÞ; x 2 ð0; 1Þ; ð2:12Þ

which is trivially solved by f ¼ g (recall that g is assumed to have mean zero) and then computing

@mugðxÞ ¼ � lim
y!0

Z 1

0

@yHðx� ~xx; yÞf ð~xxÞd~xx ¼ � Hyð�; 0Þ  p f
� �

ðxÞ ¼ f ðxÞ; ð2:13Þ

which is a boundary representation of the derivative in normal direction of ug. Although this is a perfectly

valid analytic representation, the kernel @yHð�; 0Þ is unfortunately hypersingular and won�t provide a viable

computational recipe. With this new point of view, though, we are now able to avoid dealing with hy-

persingular kernels directly. Eq. (2.12) is a mere instance of a variety of other possible superpositions of

harmonic functions. We can, for instance, use the alternative kernel G obtained by integrating (2.9) with

respect to the y-variable. It coincides with (2.2) and is clearly again a x-periodic harmonic function. A
contour plot of G is shown in Fig. 1 together with its continuous counterpart. Using (2.2) we represent the

solution of Laplace�s equation through

ugðx; yÞ ¼
Z 1

0

Gðx� ~xx; yÞf ð~xxÞd~xx ð2:14Þ

and finding f by imposing the boundary conditionZ 1

0

Gðx� ~xx; 0Þf ð~xxÞd~xx ¼ gðxÞ; x 2 ð0; 1Þ; ð2:15Þ

which is an integral equation of the first kind with a less singular kernel than (2.12) and, eventually

computing

� lim
y!0

Z 1

@yGðx� ~xx; yÞf ð~xxÞd~xx ¼ �
Z 1

Hðx� ~xx; 0Þf ð~xxÞd~xx ¼ �f ðxÞ: ð2:16Þ

0 0



Fig. 1. A contour plot of G and 1
p logðx2 þ y2Þ.

330 P. Guidotti / Journal of Computational Physics 190 (2003) 325–345
Remark 1. Using representation (2.14) instead of (2.11) corresponds to using the fundamental solution
1
2p ln jðx; yÞj instead of the Poisson integral to represent the solution in the continuous nonperiodic case.

Remark 2. Kernel (2.2) also has the advantage of avoiding the standard reduction to the continuous case
via Poisson�s summation formula by dealing with the symbol directly. This point of view will be beneficial

when choosing the discretization in Section 3.

Remark 3. We point out that the choice of the kernel G is not unique. In fact, we could have obtained
smoother kernels by modifying the symbol of G to, for instance,

X1
n¼�1

e�2pjkjy

ð2pjkjÞp e
2pikx

for some power p > 1 or more general symbols still. Here we only remark that an important feature of any
possible alternative kernel is that it should contain all modes of decay as in the example chosen above.

Appropriate ‘‘reflection properties’’ need also to be derived for the kernel in order to be able to define the

symbol in the lower half plane. See Appendix B for more details about this.

Taking this perspective we can now introduce an associated boundary integral method and still recognize

its relation to the Fourier method. This will be of utmost importance in the choice of the numerical scheme

to actually preform the computations (see Sections 3 and 4).

2.2. A boundary integral method

Assume that the boundary curve C is parametrized by the periodic continuously differentiable function

s 2 C1 ½0; 1Þ;Rð Þ: ð2:17Þ

This assumption can be weakened but, since we are not interested in the optimal analytical result here,

we shall not elaborate on that. Then we use kernel (2.2) and superpose translated copies of it along the

curve C to obtain a x-periodic harmonic function u given by
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uðx; yÞ ¼
Z 1

0

G x
	

� ~xx; y � sð~xxÞ


f ð~xxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2xð~xxÞ

q
d~xx ð2:18Þ

for a suitable function f 2 L2;p. The latter is the Banach space of 1-periodic square integrable functions. If

we choose the boundary function g 2 H 1
p with vanishing mean, thenZ 1

0

G x
	

� ~xx; sðxÞ � sð~xxÞ


f ð~xxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2xð~xxÞ

q
d~xx ¼ gðxÞ ð2:19Þ

has a unique mean zero solution solution f 2 L2;p. We can then use (2.18) to obtain a boundary integral

representation for DtNðgÞ. Since

rGðx; yÞ ¼ 4 cosðpxÞ sinðpxÞ
2 coshð2pyÞ � 2 cosð2pxÞ ;

2� 2e�2py cosð2pxÞ
1þ e�4py � 2 cosð2pxÞe�2py

�
� 2

�
ð2:20Þ

and therefore

rGðx; 0Þ ¼ v:p:
cosðpxÞ
sinðpxÞ ; d

�
� 1

�
; ð2:21Þ

some care is needed in deriving the boundary integral representation. The result is contained in the fol-

lowing lemma.

Lemma 4. Assume that s 2 C1
pð½0; 1�Þ, then the following holdsZ

C
@mðzÞGðz� ~zzÞf ð~zzÞdrCð~zzÞ
# ð2:22Þ
�f ðz0Þ þ v:p:
Z

C
@mðz0ÞGðz0 � ~zzÞf ð~zzÞdrCð~zzÞ

as

ðx; yÞ ¼ z ! z0 ¼ ðx0; sðx0ÞÞ; ðx; yÞ 2 XC

if the limit is not taken tangentially to the boundary curve.

Proof. See Appendix A. �

We use the above formula in the discretizations of Section 3.

2.3. Decomposition of the integral equation

In this section, we present an analytic decomposition/factorization of Eq. (2.19) which will eventually be

mimicked in the discretization. We introduce the symbols

a0 ¼ 2pjkjð Þk2Z ; g0 ¼ 1=2pjkjð Þk2Z

corresponding to the operators on the flat periodic geometry, where we used the standard notation

Z :¼ Z n f0g. We further need the nonconstant coefficient symbol
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gsðk; x;~xxÞ
	 


k2Z
ð2:23Þ

corresponding to the kernel appearing in (2.19). We refer to Appendix B for a formula (see (B.2) and (B.3))

and for its derivation. Denoting the Fourier transform by

ðFx!kuÞðkÞ ¼
Z 1

0

e�2pikxuðxÞdx; k 2 Z;

it is natural to decompose

F�1
k!~xxgsð�; x;~xxÞFx!k

as follows

F�1
k!~xxg0Fx!k þF�1

k!~xx gsð�; x;~xxÞ
h

� g0
i
Fx!k: ð2:24Þ

Following the procedure outlined in the previous subsection we utilize this decomposition in dealing with

(2.19).

We shall see that most (numerical) ill-conditioning can essentially be confined to the constant coefficient

term in this formulation and show how to get rid of it in a way which transforms (2.19) into an equation of
second kind. From the analytical point of view we proceed as follows. Denote the integral operator with

symbol b by opðbÞ. Then (2.24) simply reads

opðgsÞ ¼ opðg0Þ þ opðgs � g0Þ

it is easy to see that

opða0ÞopðgsÞ ¼ id� IC þ opða0Þopðgs � g0Þ ð2:25Þ

for

ICðuÞ ¼
Z

C
uð~zzÞdrCð~zzÞ:

Therefore, if we restrict our attention to mean zero functions, as we do, (2.25) simply reads

opða0ÞopðgsÞ ¼ idþ opða0Þopðgs � g0Þ: ð2:26Þ

It turns out that this point of view is very beneficial when choosing the appropriate discretization to be

used. In particular we base our discretization on the following ‘‘mixed’’ reformulation of (2.19) obtained

using (2.26)

opða0Þg ¼ f þ opða0Þ
Z 1

0

kðx;~xxÞf ð~xxÞd~xx ð2:27Þ

for

Kðx;~xxÞ ¼ G x
	

� ~xx; sðxÞ � sð~xxÞ

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ s2xð~xxÞ
q

� Gðx� ~xx; 0Þ: ð2:28Þ

The above factorization of the operator essentially shows that, in order to solve (2.19), one can solve

opðg0Þg ¼ f

instead, that is, consider g and f as if they were defined on a flat domain, and subsequently apply a

‘‘bounded’’ correction to the result. Eq. (2.27) looks very much like an integral equation of the second



P. Guidotti / Journal of Computational Physics 190 (2003) 325–345 333
kind. Its kernel is not explicitly known, however, since it is given by the DtN value of Kð�;~xxÞ for
~xx 2 ð0; 1Þ.

Remark 5. It is an important observation that we do not need the boundary curve to be of graph type. In
fact, if

ðx; yÞ : ð0; 1Þ ! R2; a 7! xðaÞ; yðaÞð Þ

is the parametrization (with parameter interval normalized to ð0; 1Þ) of an admissible ‘‘periodic’’ curve C,
that is, a, at least Lipschitz, curve with

xð0Þ ¼ 0; xð1Þ ¼ 1; yð1Þ ¼ yð0Þ;

we can use the corresponding boundary representationsZ 1

0

G xðbÞð � xðaÞ; yðbÞ � yðaÞÞf ðxðaÞ; yðaÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2aðaÞ þ y2aðaÞ

q
da ¼ gðxðbÞ; yðbÞÞ ð2:29Þ

to determine the intermediate function f and, since Lemma 4 remains valid for such curves, obtain

DtNCgð Þ xðbÞ; yðbÞð Þ ¼ �f xðbÞ; yðbÞð Þ þ v:p:
Z 1

0

Kðb; aÞf xðaÞ; yðaÞð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2aðaÞ þ y2aðaÞ
x2aðbÞ þ y2aðbÞ

s
da ð2:30Þ

with

Kðb; aÞ ¼ �xaðbÞ@yG xðbÞð � xðaÞ; yðbÞ � yðaÞÞ þ yaðbÞ@xG xðbÞð � xðaÞ; yðbÞ � yðaÞÞ:

The same decomposition of the operator described above is possible and leads to numerical benefits in this

case, too. We shall come back to this in the section dedicated to numerical experiments (see Examples 4

and 8).
3. The discretization

We now turn to the actual numerical computation of DtN. In doing so we follow the procedure outlined

in the previous sections. We discretize the periodicity interval ½0; 1Þ at equidistant points

xj ¼ ðj� 1Þh; j ¼ 1; . . . ; 2m þ 1 ¼: n for h ¼ 2�m and m 2 N:

Having fixed the discretization we denote the Fast Fourier Transform of a vector f 2 Cn by Fmf . If we
write Fm only, we mean the representation matrix of the FFT in the natural basis of Cn. First we need to

take a look at (2.27) in order to determine the intermediate vector f . We take

opmða0Þ ¼ F�1
m ðPma0ÞFm ð3:1Þ

as a discretization of opða0Þ where of course

ðPma0Þ ¼ diag ð2pjkjÞjkj6 2m�1

h i
:

Next we discretize the remaining integral operator in (2.27) by using the trapezoidal rule to obtain

Amðj; kÞ ¼ h G xj
��

� xk; sj � sk
�
� Gðxj � xk; 0Þ

�
; j; k ¼ 1; . . . ; 2m; ð3:2Þ
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where ðsjÞj¼1;...;2m is the discretization of the function s we use to describe the boundary of C. Taking into

account the asymptotic behavior of G into the singularity (cf. (2.21)) and the logarithmic nature of G we

compute the difference Amðj; kÞ as

Amðj; kÞ ¼
1

2p
log 1

�
þ amðj; kÞ
bmðj; kÞ

�
; j 6¼ k

for

amðj; kÞ ¼ e�4pðsj�skÞ � 1 ¼ �2 e�2pðsj�skÞ
�

� 1
�
cos 2pðxj

�
� xkÞ

�
bmðj; kÞ ¼ 2� 2 cosð2pðxj � xkÞÞ

and

Amðj; jÞ ¼
1

2p
log 1

h
þ ðsxÞ2j

i
on the diagonal. We end up with a discretized equation for the vector

~ff mj ¼ f mj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðsxÞ2j

q
; j ¼ 1; . . . ; 2m

in the form

idmð þ opmða0ÞAmÞ ~ff m ¼ opmða0Þgm: ð3:3Þ
Remark 6. At first sight it might appear that a good reason for subtracting the flat term in (3.2) be that it
helps taking care of the singularity on the diagonal. Although this is certainly true, another benefit is ac-

tually the significant reduction of the condition number. We refer the reader to the next section for nu-

merical examples illustrating this fact. From the analytical point of view, we observe that

opmða0ÞAm

can be viewed as the discretization of a bounded operator and we therefore do not expect a deterioration of

its conditioning as the mesh becomes finer.

At this point we compute ~ff m as

~ff m ¼ idmð þ opmða0ÞAmÞ
�1
opmða0Þgm

and proceed with the computation of DtNðgÞ. We need to evaluate integral (2.22) which we discretize by

means of the spectral ‘‘alternating point’’ trapezoidal rule (see [15]). In order words let the kernel in (2.22)

be discretized as

Bmðj; kÞ ¼ hððsxÞj;�1Þ � rGðxj � xk; sj � skÞ

if

j� k ¼ 1ðmod 2Þ

and

Bmðj; kÞ ¼ 0

otherwise. Then we compute
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DtNmðgmÞ ¼ �f m þ Bm ~ff mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðsxÞ2m

q : ð3:4Þ
4. Numerical examples

In this final section, we compute a few examples to illustrate the virtues of the method developed in the

previous sections. In particular we also consider curves of large variation as well as nonsmooth curves. We

consider two types of examples. In a first group of examples we choose different boundary functions s and
obtain test boundary functions g by using combinations of the simple x-periodic harmonic functions

hkðx; yÞ ¼ e�2pky cosð2pkxÞ: ð4:1Þ

These will provide a good test for the accuracy of our method. In the second type of examples we choose

both the boundary function s and the boundary value g freely. We would not bother choosing mean zero
boundary values g but take the numerical projection

Pmgm ¼ gm �
P

j g
m
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðsxÞ2j

q
P

j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðsxÞ2j

q
instead, where we again discretized the integrals by the trapezoidal rule.

4.1. opm(a0) is a good preconditioner

Although the decomposition (2.27) of the DtN operator seems natural from the theoretical point of

view, it might well be numerically ineffective. We shall show that it in fact is tremendously beneficial. It

turns out that opmða0Þ carries most of the ill-conditioning of the problem but poses no problem as a WDO

with constant coefficients. To illustrate this fact we consider a series of examples. We obviously do not need

to consider any boundary value to compute the condition number c0 of

idm þ opmða0ÞAm; ð4:2Þ

which is the only matrix we actually need to invert in our procedure. If one needs to consider very fine grids

the structure of (4.2) can be exploited in combination with an iterative method for the inversion: The

pseudodifferential operator opmða0Þ can be dealt with in Fourier space whereas the integral operator could

be tamed by multipole expansions (cf. [12]).

In the following examples we choose

m ¼ 6; 7; 8; 9; 10:

We compare the condition number c0 of (4.2) with the condition number c1 of the discretization matrix
badA corresponding to the unmodified boundary integral equation (2.19) modulo the fact that we factor out

the smallest eigenvalue which corresponds to the 1D kernel of the continuous operator. The boundary

curves considered in Examples 1–4 (and then again in Example 5–8 again) are depicted in Figs. 2 and 3.

Example 1. Consider the smooth boundary curve given by

s ¼ 0:8þ tanhð2þ sinð2pxÞÞ:



Fig. 2. The boundary curves C for Examples 1–3 and 5–7.

Fig. 3. Two periods of the boundary curve C for Example 4.
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Table 1 contains the results obtained in this case.

Example 2. As a second example we take a curve s with a large variation given by

s ¼ 0:5þ 2 cos2ð2pxÞ:

Observe that the derivative of s roughly varies between )10 and 10. The results are summarized in Table 2.

Example 3. Finally we consider the nonsmooth Lipschitz curve

s ¼ 0:25þ ar



Table 1

The condition numbers for (4.2) and badA

c0 c1

m ¼ 6 1.5210 7.1795� 102

m ¼ 7 1.5210 2.0023� 105

m ¼ 8 1.5210 5.7463� 105

m ¼ 9 1.5210 1.2906� 106

m ¼ 10 1.5210 2.6674� 106

Table 2

The condition numbers for (4.2)1 and badA

c0 c1

m ¼ 6 56.4739 3.6536� 102

m ¼ 7 56.4140 1.4635� 103

m ¼ 8 56.4139 2.5714� 103

m ¼ 9 56.4139 1.0205� 104

m ¼ 10 27.3285 3.4427� 106
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with

r ¼ x2v½0;0:25Þ þ ð0:5� xÞ2v½0:25;0:75Þ þ ð1� xÞ2v½0:75;1Þ;

where vJ denotes the characteristic function of the interval J and a ¼ 4; 15. In this case the results for a ¼ 4

are found in Tables 3 and 4 for a ¼ 15.

Example 4. Finally, we consider the case of a curve C which can not be represented as the graph of a

function (see Fig. 3). Let it be parametrized by

c1ðxÞ ¼ xþ 0:35 sinð4pxÞ; c2ðxÞ ¼ 2þ sinð2pðx� 0:25ÞÞ; x 2 ½0; 1�:

Table 5 summarizes the results obtained in this case.
Table 3

The condition numbers for (4.2) and badA

c0 c1

m ¼ 6 2.4995 1.7830� 103

m ¼ 7 2.5822 3.4932� 103

m ¼ 8 2.6958 1.4214� 104

m ¼ 9 2.8223 5.6588� 104

m ¼ 10 2.9205 2.3298� 105

Table 4

The condition numbers for (4.2) and badA

c0 c1

m ¼ 6 23.0605 7.3683� 102

m ¼ 7 24.5880 2.9023� 103

m ¼ 8 25.6142 8.6849� 103

m ¼ 9 9.2017 4.3001� 104

m ¼ 10 13.1765 1.8960� 105



Table 5

The condition numbers for (4.2) and badA

c0 c1

m ¼ 6 48.1249 7.8616� 101

m ¼ 7 46.2576 7.9994� 102

m ¼ 8 46.2058 2.7657� 103

m ¼ 9 22.3886 1.1394� 105

m ¼ 10 12.9137 6.6306� 105
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It should be observed that the condition number of badA grows as the discretization becomes finer since

the problem is ill-posed. Looking at the condition number c0 we see that our preconditioning procedure

really achieves its goal, since the condition number doesn�t virtually grow anymore and is therefore all

confined to the simple operator opmða0Þ. The second and third example suggest that a large variation in the
boundary curve is actually worse that a lack of smoothness, at least in terms of the numerical properties.

This is not completely unexpected since it becomes more and more difficult to capture the nonlocal con-

tribution from different spots along the curve due to the fact that, in the large variation case, their con-

tributions are many orders of magnitude apart from one another.

Remark 7. We point out that, eventhough the proposed preconditioning method is original, other pre-

conditioning techniques have previously been used for single layer potentials in the context of boundary

elements methods, see [6,10].

4.2. The method is very accurate

Next we take on the above examples again and actually compute the DtN operator and compare to the

exact solution to illustrate the accuracy of the method we introduced. It should be clear that the method

ought to be very accurate by construction. To show that we compute both the relative L2 and the L1-norms.

After that we compute DtN for generic curves and boundary data to show its stability with respect to

variations of the domain geometry.
Let us fix

hðx; yÞ ¼ e�2py cosð2pxÞ þ 100e�6py cosð6pxÞ þ e�12py cosð12pxÞ

as the harmonic function we use to produce the exact Neumann datum DtNðgÞ to the boundary value

gðxÞ ¼ hðx; sðxÞÞ; x 2 ½0; 1Þ ð4:3Þ

along the boundary curve s. Let also

u ¼ DtNðgÞ and um ¼ DtNmðgmÞ

denote the exact and the approximate solution, respectively. We compute the relative L2;pð0; 1Þ and

L1;pð0; 1Þ-errors

e2m ¼
ku� umkL2

kukL2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j¼0;...;n�1 juðj  hÞ � umðjÞj2P

j¼0;...;n�1 juðj  hÞj
2

vuut
and

e1m ¼
ku� umkL1

kukL1
¼ maxj2f0;...;n�1g juðj  hÞ � umðjÞj

maxj2f0;...;n�1g juðj  hÞj
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Example 5. Assume that s is given as in Example 1 and that g is determined by (4.3). We obtain the results

given in Table 6

Example 6. Consider now s as given in Example 2 and g given by (4.3). Then we obtain the errors contained

in Table 7.

Example 7. Consider now s as given in Example 3 and g given by (4.3). The relative errors are given in

Tables 8 and 9 for a ¼ 4 and for a ¼ 15, respectively.

Example 8. Consider now C as specified in Example 4 and g given by (4.3). We obtain the errors shown in

Table 10.
Table 6

The relative error for s as in 1 and for (4.3)

e2m e1m

m ¼ 6 6.1303� 10�9 1.6655� 10�8

m ¼ 7 4.2456� 10�14 1.1732� 10�13

m ¼ 8 1.4749� 10�13 3.3107� 10�13

m ¼ 9 4.5708� 10�13 9.6493� 10�13

m ¼ 10 2.1229� 10�12 5.4297� 10�12

Table 7

The relative error for s as in 2 and for (4.3)

e2m e1m

m ¼ 6 8.9405� 10�2 1.0894� 10�1

m ¼ 7 7.1529� 10�3 8.5876� 10�3

m ¼ 8 3.8747� 10�5 5.1342� 10�5

m ¼ 9 1.1816� 10�9 1.7387� 10�9

m ¼ 10 1.7506� 10�13 9.9333� 10�13

Table 8

The relative error for s as in 3 and for (4.3)

e2m e1m

m ¼ 6 7.1434� 10�6 7.5789� 10�6

m ¼ 7 1.3932� 10�7 1.9187� 10�7

m ¼ 8 2.2859� 10�9 4.0785� 10�9

m ¼ 9 3.4170� 10�11 9.1362� 10�11

m ¼ 10 2.4456� 10�12 4.1165� 10�12

Table 9

The relative error for s as in 2 and for (4.3)

e2m e1m

m ¼ 6 4.7471� 10�5 5.3208� 10�5

m ¼ 7 7.5167� 10�10 3.5195� 10�10

m ¼ 8 2.5880� 10�13 3.6613� 10�13

m ¼ 9 7.8558� 10�13 1.4393� 10�12

m ¼ 10 3.2135� 10�12 6.1163� 10�12



Table 10

The relative error for s as in 2 and for (4.3)

e2m e1m

m ¼ 6 2.3240� 10�3 2.3202� 10�3

m ¼ 7 1.0230� 10�5 1.4338� 10�4

m ¼ 8 1.2225� 10�6 2.1721� 10�6

m ¼ 9 1.4307� 10�9 2.8500� 10�9

m ¼ 10 1.6602� 10�13 2.3675� 10�13

Fig. 4. The function DtNðcs; gÞ for different values of c.
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The above examples show clearly that our method is very accurate, is stable in the sense explained and

performs well even for curves which are nonsmooth and/or of large variation. The method appears to be

spectrally accurate. Finally we would like to present an example where we freely choose both the curve s
determining the boundary and the boundary datum g.

Example 9. Let us use s as given in Examples 2 and 6 and the boundary function

gðxÞ ¼ cosð2pxÞ; x 2 ð0; 1Þ:

In Fig. 4 we show DtNðcs; gÞ for different values of cP 0 starting with the flat case for fixed discretization

parameter m ¼ 8.
5. Conclusion

We proposed a boundary integral method for the computation of the Dirichlet-to-Neumann operator in

the 2D periodic case using WDO and explicit representations of the integral operators involved via periodic
kernels. In the process we showed that there is a lot of freedom in the choice of the kernel to be used for the

integral equations involved and how to produce appropriate periodic kernels solely by means of their flat

symbols and the jump relation for their continuous counterparts. On this basis we suggested a discretization
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method which works very well for curves which can be both nonsmooth and/or of large variation proving

to be spectrally accurate. We proposed a preconditioning procedure for an integral equation of first kind

which we therefore can accurately solve without resorting to special quadrature or regularization tech-

niques. Finally we corroborated our analysis with a series of numerical examples which show the great

benefits obtained.

The method developed here for the DtN operator appears very general and applicable to a variety of ill-

posed integral equations. It also appears possible to use a similar procedure in 3D. We shall be addressing

these issues in a forthcoming paper.
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Appendix A

Proof of Lemma 4. Let Ra denote the rotation

Ra ¼
cosðaÞ � sinðaÞ
sinðaÞ cosðaÞ

� �

of angle a 2 ð�p=2; p=2Þ about the origin. We prove the claim for

ðxe; yeÞ ¼ ðx0; y0Þ þ eRað�sxðx0Þ; 1Þ 2 XC

letting e ! 0þ. Any general nontangential approximating sequence is in fact contained in a wide enough

cone. Since the kernel is smooth away from the boundary curve we can consider

I06~xx6 1ðeÞ :¼
Z 1

0

Kðx;~xxÞf ð~xxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2xð~xxÞ
1þ s2xðx0Þ

s
d~xx

for

Kðx;~xx; eÞ ¼ ðsxðx0Þ;�1Þ � rGðxe; yeÞ:

Taking the limit as e goes to 0 will produce the boundary value. The limit only exists on a regularity

assumption for f . Here we think of f as being continuous but a natural assumption in the L2;p context

would be f 2 H 1=2
p ðCÞ. We then split the integral into two pieces as follows

I06~xx6 1ðeÞ ¼ Ijx0�~xxj6
ffiffi
e

p þ Ijx0�~xxj>
ffiffi
e

p ; ðA:1Þ

where the distance jx0 � ~xxj is to be measured modulo the period, that is,

jx0 � ~xxj :¼ x0 � ~xx mod 1:

Using (2.20) it is easily checked that

rGðx; yÞ ¼ 1

p
x

x2 þ y2
;

y
x2 þ y2

� �
þ r1ðx; yÞ; r2ðx; yÞð Þ ðA:2Þ

for bounded functions ri, i ¼ 1; 2. It therefore follows that
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Ijx0�~xxj>
ffiffi
e

p

# ðe ! 0Þ
v:p:
Z 1

0

Kðx0;~xxÞf ð~xxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2xð~xxÞ
1þ s2xðx0Þ

s
d~xx

for

Kðx0;~xxÞ ¼ �@yG x0
	

� ~xx; sðx0Þ � sð~xxÞ


þ sxðx0Þ@xG x0

	
� ~xx; sðx0Þ � sð~xxÞ



:

As to the first term in (A.1) we proceed as follows. Since f is smooth and sx 2 Cpð½0; 1�Þ it follows from
(2.20) or (A.2) that

Z
jx0�~xxj6

ffiffi
e

p Kðx0;~xx; eÞ f ð~xxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2xð~xxÞ
1þ s2xðx0Þ

s2
4 � f ðx0Þ

3
5d~xx

converges to zero. Hereby we clearly set

Kðx0;~xx; eÞ ¼ ðsxðx0Þ;�1Þ � rGðxe; yeÞ:

We therefore only need to analyseZ
jx0�~xxj6

ffiffi
e

p Kðx0;~xx; eÞf ðx0Þd~xx:

Using (A.2) we see that

Kðx0;~xx; eÞ � � 1

p
�sðx0Þa1ðx0;~xx; eÞ þ a2ðx0;~xx; eÞ

a21ðx0;~xx; eÞ þ a22ðx0;~xx; eÞ
;

where

a1ðx0;~xx; eÞ ¼ x0 � ~xx� e sxðx0Þ cosðaÞ½ þ sinðaÞ�

and

a2ðx0;~xx; eÞ ¼ sðx0Þ � sð~xxÞ þ e½ � sxðx0Þ sinðaÞ þ cosðaÞ�:

Now, taking into account the differentiability of s we obtain after some manipulation

Kðx0;~xx; eÞ � � 1

p
e cosðaÞ

ðx0 � ~xx� e sinðaÞÞ2 þ e2 cos2ðaÞ
: ðA:3Þ

When we write f � g we mean that f � g is a at least integrable function. It is therefore an easy
computation to see that

lim
e!0þ

Z
jx0�~xxj6

ffiffi
e

p Kðx0;~xx; eÞf ðx0Þd~xx ¼ �f ðx0Þ

follows from (A.3) provided a 2 ð�p=2; p=2Þ. In conclusion, putting all the pieces back together we obtain

the claimed formula. �
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Appendix B. Kernel derivation from the flat symbol

In general one cannot expect to obtain explicit representations for the kernel like (2.2). It is therefore

important and interesting to obtain a representation of the nonflat kernel in terms of the symbol of its flat

counterpart.

The DtN operator in the flat case can be viewed as a WDO with constant coefficients and symbol

d0 ¼ ð2pjkjÞk2Z
or, equivalently, the ‘‘boundary operator’’ of the operator family with symbols

d0ð�; yÞ ¼
2pik

�2pjkj

� �
� 0

�1

� �
e�2pjkjy

� �
k2Z

; y > 0;

which corresponds to the symbol of the periodic Poisson kernel. It seems therefore natural to view the DtN

operator for a generic curve as the WDO with nonconstant coefficients with symbol

dð�; x;~xxÞ ¼ 2pik
�2pjkj

� �
� m1ðxÞ

m2ðxÞ

� �
e�2pjkjðsðxÞ�sð~xxÞÞ

� �
k2Z

; x;~xx 2 ½0; 1Þ

using the standard notation for WDOs (see [4] for instance) and denoting the unit outer normal to C at

x 2 C with mðxÞ. The latter is simply the ‘‘normal derivative symbol’’ of

að�; x;~xxÞ ¼ e�2pjkjðsðxÞ�sð~xxÞÞ
	 


k2Z
; x;~xx 2 ½0; 1Þ;

restricted to the boundary. The kernel

Kðx;~xxÞ ¼ H x
	

� ~xx; sðxÞ � sð~xxÞ


; x;~xx 2 ½0; 1Þ;

seems to be directly associated to this symbol via

Kðx;~xxÞ ¼
X
k2Z

e�2pjkjðsðxÞ�sð~xxÞÞe2pikðx�~xxÞ:

Unfortunately this point of view seems hopelessly formal in view of the terrible lack of convergence of

the above series. The difference sðxÞ � sð~xxÞ can and, in fact, always will assume both positive and negative

values unless the curve is flat. We now show how this point of view can be safely maintained with the
necessary modifications.

Theorem 8. The Fourier symbol of the operator with kernel K for a generic curve (of graph type) is given by

aðk; x;~xxÞ ¼ e�2pjkjðsðxÞ�sð~xxÞÞ

if

k 2 Z; x;~xx 2 ½0; 1Þ s:t: sðxÞ � sð~xxÞP 0

and by

aðk; x;~xxÞ ¼ �2dðkÞ � e2pjkjðsðxÞ�sð~xxÞÞ

if

k 2 Z; x;~xx 2 ½0; 1Þ s:t: sðxÞ � sð~xxÞ < 0:
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Proof. Whenever the ‘‘natural’’ series converges it obviously sums up to

H x
	

� ~xx; sðxÞ � sð~xxÞ


:

Now, H is also well-defined in the lower half plane and its values for negative second argument are

precisely those we need to complete the definition of our symbol in the appropriate way. Fortunately, the

values of H in the lower complex half-plane are uniquely determined by those in the upper half-plane. In

fact H enjoys the symmetry property

Hðx;�yÞ þ Hðx; yÞ ¼ �2; x 2 R; y > 0: ðB:1Þ

Since H is known explicitly, this can be checked by a simple calculation. It is therefore clear how the

symbol needs to be defined for

sðxÞ � sð~xxÞ < 0

in order to produce the right kernel. �

Remark 9. In most cases (like for the DtN operator in 3D) one cannot produce an explicit formula for the

kernel. It is therefore crucial to understand how the definition of the ‘‘right symbol’’ has to be made based

on available knowledge. The latter consists of the ‘‘convergent part’’ of the series and of the singularity in

the origin, which coincides with the one of the continuous flat geometry kernel. The free space version of H
is given by

Hf ðx; yÞ ¼
1

p
y

x2 þ y2
; x 2 R; y 6¼ 0;

and satisfies the well-known jump-relation

lim
y!0�

Hf ðx; yÞ ¼ �d in S0ðRÞ:

It follows directly from the Fourier series representation of H that

lim
y!0þ

Hðx; yÞ ¼ d � 1:

Since the jump-relation is determined by the singularity, which, in turn, is determined by the ‘‘continuous
kernel’’ we obtain the following jump relation for the periodic kernel

lim
y!0�

Hðx; yÞ ¼ �d � 1;

which leads to the symmetry property (B.1) in the limit as y ! 0. The property extends to the whole

complex plane since Hð�; �Þ þ Hð�;��Þ � �2 is the unique continuous bounded harmonic function with
value �2 on the real line by Liouville�s theorem.

The same analysis can be performed for the kernel G, given by (2.2). Its symbol is then seen to be given

by

gðk; x;~xxÞ ¼ e�2pjkjðsðxÞ�sð~xxÞÞ

2pk
ðB:2Þ

if

k 2 Z; x;~xx 2 ½0; 1Þ s:t: sðxÞ � sð~xxÞP 0
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and by

gðk; x;~xxÞ ¼ e2pjkjðsðxÞ�sð~xxÞÞ

2pk
þ e2pik~xxĉcðk;~xxÞ ðB:3Þ

if

k 2 Z; x;~xx 2 ½0; 1Þ s:t: sðxÞ � sð~xxÞ < 0;

where the correction term ĉc is given by

ĉcð�;~xxÞ ¼ Fx!kcð�;~xxÞ

for

cðx;~xxÞ ¼ �2 sðxÞ
	

� sð~xxÞ


v½sðxÞ�sð~xxÞ<0�

vS being the characteristic function of the set S.
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